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Abstract— With the discovery of potential extra terrestrial
Lava Tubes, their exploration has become a hot topic for
space agencies. Autonomous robots are needed to answer many
questions that are raised by their discovery. We propose in this
paper to discuss the design of a feasible and performing Visual
Odometry (VO) solution to enable a safe navigation for spatial
rovers in such environment. For this, we propose a modular bi-
monocular indirect approach adapted to every camera model
while keeping the processing load as low as possible. This
paper presents an experimental study in a self illuminated cave
environment. We focus on keypoint / descriptor pairs, feature
association modalities and camera models. We show results on
both real and simulated scenario to enhance the comprehension
of methods widely used in the robotic community and their
adaptation to such environment. Results from these experiments
will be used to design a visual based navigation adapted for
extra terrestrial Lava Tubes exploration.

I. INTRODUCTION

Spatial exploration is a exciting and challenging applica-
tion of robotics that demands an advanced level of autonomy
while using low embedded power and processing capabili-
ties. Planetary robots are mostly Unmaned Ground Vehicles
(UGV) that rely on several sensors to execute autonomous
tasks. To navigate in an unknown environment, a robot
needs to perform state estimation and mapping in order
to plan and follow trajectories. On the second successful
rover mission on Mars in 2004, the Mars Exploration Rovers
(MER) [1], a pair of stereo cameras is used for VO and
point cloud generation to navigate safely in hazardous terrain.
However, spatial context imposes computational limitations:
the motion of the rover was only estimated with two stereo
pairs thanks to a Maximum-Likelihood estimator. On Mars
Science Laboratory (MSL) mission in 2012, a similar but
faster and more robust algorithm was implemented [2]. The
observations from the MER mission were determinant to
highlight the main improvements necessary for a better
solution [3]. Important wheel slippage was noticed during
this mission. As a result, odometers measurements are not
incorporated into the navigation solution.

Recently, satellite images from Lunar and Martian vol-
canic areas show features that may be interpreted as lava
tubes [4]. These hypothetical caves seem similar to their
terrestrial analog, but subsurface exploration is needed to
determine their precise morphology. Moreover, as a conse-
quence of the small gravity, they could be large enough to
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host artificial bases shielded from radiation. Thus, robotic
exploration in a lava tube context may be the goal of a
future extra terrestrial mission and an appropriate navigation
software needs to be developed. Such missions require to
push further the navigation capabilities of the rovers while
keeping in mind the intrinsic limitations and constraints of
spatial technologies.

Cave mapping has gained a lot of interest during the
Subterranean Challenge that saw many solutions reaching
outstanding performances [5]. Most of them use rotating
LiDARs and redundancy in the system to reach high levels
of robustness. However, rotating devices like LiDARs are
not ready to be send in space yet because of their power
consumption, bigger mass and reliability concerns regarding
their fast spinning motors. Moreover, redundancy in the
system requires too much power and processing cost for
spatial applications. The only mature LiDAR solution for
space is the solid state LiDAR but, such device provides
a very narrow Field of View (FoV) and is more dedicated
to traversability analysis. In the context of cave mapping
an important FoV is required in order to optimize both the
mapping and the localisation capabilities of the rover. It has
been shown that a Stereo Fisheye setup, which has a wider
FoV, may offer larger navigability maps for rover navigation
[6].

Consequently, visual navigation is the solution that needs
to be studied in this context. On Earth, the robotic community
has reached a very good knowledge of the Visual SLAM
problem. Versatile and robust systems have emerged in the
past few years in both direct [7] and indirect [8] fashions.
However, these systems have also reached a great degree
of complexity. Many design choices in the SLAM pipeline
deserve to be discussed to improve our knowledge of these
powerful tools and for a potential use of VSLAM in space
application.

A major issue in the use of visual sensor in such environ-
ments is that it requires artificial light to operate. Thus, we
propose to investigate a design solution for a bi-monocular
VO system for lava tube navigation with onboard illumina-
tion. This paper sheds light on three design choices and is
the support of a preliminary work toward a pertinent visual
navigation solution for extra terrestrial lava tube exploration:

• Keypoint and Descriptor choice for feature extraction
and association,

• Method for associating features frame to frame,
• Comparison between standard and wide angle camera

setup.



II. NOTATION

In this paper, we note the pose of a camera at timestamp
i in the world frame as wTci ∈ SE(3). We parameterize
landmark j with its 3D position in the world frame lwj ∈R3.
We can compute the coordinates of j-th landmark in the
i-th camera frame with lci

j = wT−1
ci

lwj = ciTwlwj . We denote
the projection function of a camera π : R3 −→ R2 that
maps a 3D point in the camera frame in the 2D image
xi, j = π(ciTwlwj ). We note abusively π−1 : R2 −→ R3 the
function that computes the bearing vector of a given pixel
ui, j = π−1(xi, j). We work with a set of keyframes in a sliding
window W and each keyframe Ki has a set of map point Li.
We concatenate all landmarks and keyframe poses in a state
vector X .

III. SYSTEM OVERVIEW

In order to evaluate the performances of a bi-monocular
VO design in an underground cave exploration context, we
first need to get a simple modular baseline odometry frame-
work. This section aims to present the proposed baseline with
some specificities (Figure 2).

A. Feature detection

1) Image pre-processing: A first mandatory step while
navigating in dark environment with artificial illumination is
to enhance the contrast of the image. Indeed, due to the
lighting conditions, the appearance of the environment is
changing as the robot moves. The image pair taken by the
robot at each step is first pre-processed with CLAHE [9].

2) Feature extraction and association: Then the features
have to be detected and associated between the different
acquired images. As in classical bi-camera approaches there
is two association steps: between cameras from the same
frame and between successive frames on one of the two
cameras. We compared and evaluated two techniques to
proceed such association: tracking and matching (see Section
IV-B). Finally, the map is updated with the matched features
and a landmark recovery phase is performed to recover lost
features due to illumination change or occlusion.

B. Estimation step and match rejection

From the matches between the currently detected features
and the map landmarks, a first pose estimation is produced
using P3P algorithm [10] in a RANSAC fashion to remove
false feature-to-landmark associations.

A second outlier rejection phase is performed by checking
the epipolar constraint due to the newly estimated camera
motion. Instead of checking the classical distance to the
epipolar line (or curve in the case of fisheye camera), we
propose to check the angle to the epipolar plane (Figure 1).
This rejection method makes use of bearing vectors and can
be generalized to any camera model with less computational
time. The residual δe can be computed as follow:

δe =
π

2
− arccos

((
t̂×u1

)
.u2

)
, (1)

Fig. 1: Illustration of the epipolar angular error. ∏ is the epipolar
plane, {C1,C2} are the optical centers of the two views and {u1,u2}
are the two bearing vectors of landmark l observation.

with t̂ = t
||t|| being the direction of the translation vector

between the two views and u1,u2 the bearing vectors of the
same observation in both views.

If δe is superior to a threshold, the new matched feature
can be classified as an outlier. Finally, a pose refinement is
performed with a classical single frame bundle adjustement.

C. Keyframe selection

As we have limited power and memory on embedded
devices, the number of frames to keep in memory has to
be reduced while retaining the maximum information. We
use the parallax information as a keyframe indicator as
we initially proposed in [11]. Parallax can be seen as an
increase of information over each landmark: a bigger parallax
value enables a more precise landmark triangulation. If the
average parallax increase of all the landmarks in the map
since the last keyframe goes over a certain threshold, the
new frame has to be kept in memory. This metric does not
take into account landmark loss due to illmination change
for instance, so we also select a keyframe if the number
of tracked landmark since the last keyframe goes below a
certain threshold.

D. Landmark initialization

In order to reduce computation, we choose to initialize
landmarks only when a keyframe is voted. At this time,
all the landmarks linked with a feature that was associated
with the previous keyframe are initialized. We prioritized
features that were associated on both left and right cameras,
then features that were associated on left cameras only and
finally, if the number of features is still too low, landmark are
initialized from left / right associations of the current frame.

In most cases, landmarks are initialized from more than
two views. Thus, we implemented a generalization of the
mid-point algorithm to n-points for triangulation of land-
marks. However, the 3D triangulation doesn’t return the
optimal landmark position in term of reprojection error as
the residual is in the 3D space and not in the 2D observation
space. This rough initialization is then followed by the
minimization of the reprojection error

L∗
i = argmin

Li
∑

lwj ∈Li

||xi, j −π(ciTwlwj )||ρ . (2)
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Fig. 2: Pipeline of both matching based and tracking based Visual Odometry. Steps relative to tracking design are in red, whereas boxes
referring to matching design are in blue.

To mitigate the influence of outliers, we apply the robust
Huber norm ρ to our reprojection error in the first iterations.
Based on the mean reprojection error, an outlier rejection is
finally performed to filter out wrong landmarks.

E. Local Map optimisation

Finally, a Bundle Adjustement (BA) step is performed on a
sliding window of keyframes by minimizing the reprojection
error of every landmark lwj observed in our window W

X∗ = argmin
X

 ∑
Ki∈W

∑
lwj ∈Li

||xi, j −π(ciTwlwj )||2
 . (3)

We solve this problem with the Levenberg-Marquardt algo-
rithm from the library Ceres. To reduce the processing time
and because of the multiple outlier rejection mechanism, the
Euclidean norm is now used in the global BA step.

IV. DESIGN CHOICE AND VALIDATIONS

From the previously introduced modular VO framework,
we investigate the impact of different designs on both the
performances and processing time. We focus on three main
points :

• the feature choices,
• the association step,
• the camera model.
The impacts of such design choices have been analysed

on both simulated and real data. Real data were provided
by the OIVIO dataset [12], that provides video sequences in
dark scenes with self illumination. Simulated data were made
on Gazebo, in a cave world inspired by the Subterranean
challenge [13]. The software has been developed in C++,
and all experiments has been performed by a desktop station
equipped with an Intel Core i7, 3.2 GHz clock rate. Even
for SuperPoint extraction, we have not used a GPU.

A. Keypoints and Descriptors

1) Comparison of keypoints in artificial illumination con-
ditions: In any indirect SLAM methods, sparse represen-
tation of the observations are composed of keypoints. Such
features must be stable over time, robust to changes in point-
of-view and illumination conditions so they can be matched

over frame. Moreover, we aim to have low computational
cost for both keypoints extraction and descriptor calculation.
We propose to follow Ferrera et al [14] work on submarine
navigation, by implementing additional solutions and adapt-
ing their approach to subterranean images using onboard
illumination.

We select and compare the most used features from the
robotic community namely: SIFT [15], KAZE [16], ORB
[17], BRISK [18], FAST+ORB and SuperPoint [19]. Super-
Point is a learned detector based on a Convolutionnal Neural
Network architecture. We used the pre-trained model from
the original publication. KAZE, SIFT and SuperPoint are
obviously too computationally expensive for our application,
nevertheless we think that studying their robustness in chal-
lenging lighting conditions is of interest for the community.

2) Experimental comparison: To study the performance
of each detector / descriptor pair, we have run our VO
on a trajectory of the OIVIO dataset (MN 050 GV1).
The configuration was the same for every experiment: 500
keypoints were extracted in each frame, with a bucketing
strategy for a better spatial dispersion of keypoints. The
feature association is done by matching.

We have computed several indicators:

• The full extraction process time, including the non-
maximum-suppression and the bucketing.

• The percentage of outlier per matching: it describes the
ability to match reliable features. It has to be compared
to the total number of match to have an idea of the
global quality of the feature association. The outlier
detection was done via essential matrix computation in
a RANSAC scheme.

• The average number of matches per frame pair before
filtering.

• The track length i.e. the number of matched features per
landmarks.

The results are presented in table I. KAZE and SIFT offer
obviously superior performances in terms of confident point
selections but KAZE is disappointing on track length. Its
robustness to light changes is limited. BRISK and ORB
have similar performances in frame to frame matching, but
BRISK has less repeatability. ORB descriptor is quite robust



TABLE I: Performance comparison between the selected detector /
descriptor pair.

dt (ms) % outliers matches / frame track length
SIFT 71 1.0 180 9

KAZE 66 1.5 220 6
ORB 15 6.9 175 6.8

FAST/ORB 5 3.4 95 10
BRISK 25 5.9 200 4.5

SuperPoint 350 8 280 9.0

to lighting changes and the combination FAST + ORB is
the most effective for associating features on the long run:
less points are matched, but they are matched longer. BRISK,
ORB and KAZE produce binary descriptors that are matched
efficiently with the Hamming distance, SIFT produces patch
descriptors that are matched with L2 norm that is more
computationally expensive. SuperPoint seems also effective
in our context as it can match a lot of points and track them
for a great number of keyframes. However, such a solution
is not suitable for real time applications on a power limited
hardware.

B. Feature Association Strategies

1) Matching vs Tracking: In order to get multiple views
of a given keypoint, two main techniques have emerged in
the literature: descriptor matching or feature tracking.

Descriptor matching is done by computing the distance
between the descriptors of keypoints. In our system, when
we match points in two consecutive frames, we compare
a keypoint from the first frame with all the keypoints in
a rectangle centered on the same position in the second
frame. The size of this rectangle is a hyperparameter that
can be tricky to tune as it depends on the frame rate and
the dynamics of the robot. A trade off between computation
load and the level of motion allowed between frames has to
be found.

Tracking is performed using Kanade-Lucas-Tomasi (KLT)
algorithm. It is based on optical flow computation on dif-
ferent scale pyramids of the images [20]. To avoid wrong
tracks, we implemented it in a “forward backward” fashion.
The tracking is performed from the first frame to the second
one and the tracked features are tracked back from the second
frame to the first one. If the initial point is not recovered,
the track is considered wrong. This method is based on
the optical flow equation that is valid under the constant
intensity hypothesis. Only small motions, in a short timeline
can produce valid tracks. A good point is that features do
not need to be detected on each frames while this is needed
for matching. In our pipeline, frames are repopulated with
features only for keyframes. The difference between our VO
matching based and our VO tracking based can be observed
on figure 2.

2) Association performances: We compared the perfor-
mance of both feature association strategies on the OIVIO
dataset which provides six sequences in a mine on a UGV
with groundtruth. Three levels of onboard light intensity
(1500, 5000 and 10000 lumens) are tested on two different
trajectories. The Absolute Trajectory Error (ATE), Relative
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Fig. 3: Histogram that represents the lengths of tracks i.e. the
number of keyframes on which a landmark is detected for a
matching based VO and a tracking based VO.

Pose Error (RTE) and the average duration of an iteration are
the metrics evaluated. The couple FAST+ORB was chosen
for all these experiments and the results are presented on
table II. For these experiments, 1000 keypoints were detected
on each frame with Matching while 250 keypoints were
detected on each Keyframes with KLT.

In most cases, Matching based VO seems to be more accu-
rate than KLT based method, especially on the RTE metric.
When keypoints are tracked, as the point is not redetected at
each frame, there can be a small drift over time which can
explain the loss of accuracy. But for every sequence, KLT
design is faster. The necessity to detect keypoints on each
frame in the Matching case increases the average running
time. Also, we noticed that more Keyframes were voted
due to a lack of features tracked with the Matching design
and Keyframes require more computations than frames. KLT
enables to track features on more frames (Figure 3) so that
Keyframes are more spaced in time.

In both systems, there seems to be no influence of the
light intensity on the global performances. The image pro-
cessing step permits to handle well low enlighten scenes.
This is a good point as it shows that heavy power lights
are not mandatory to perform VO in such conditions. The
performances of ORBSLAM2 [8] on these sequences are
also provided on table II. Its accuracy is better but it comes
at a higher computational cost, mainly due to its restrictive
landmark selection and complex map management.

C. Classical vs Fisheye optics

1) Camera model choice: Capturing an image flow is a
fundamental piece of a VO system. Choosing the device with
the most suitable Fov depends mainly on the application.
For earth based applications like autonomous vehicles, high
frame rate and classical optics are the standard as the FoV is
mainly focused on the front of the vehicle and the positioning
relies mainly on Global navigation Satellite System (GNSS).
Intuitively, a wide FoV may help to maintain features in
sight for a longer time to make the navigation more robust.
This is why, when going in GNSS denied environment, the
FoV is increased using multiple sensors or rotating LiDAR to
improve the localisation and mapping capabilities. In the case



TABLE II: Performances on OIVIO Dataset

KLT Matching ORBSLAM2
Scenario Distance(m) Duration(s) ATE(m) RTE(m) dt(ms) ATE(m) RTE(m) dt(ms) ATE(m) RTE(m) dt(ms)

MN 015 GV1 0.19 0.07 33 0.38 0.04 35 0.11 0.04 43
MN 050 GV1 80 218 0.26 0.08 25 0.43 0.05 39 0.12 0.04 47
MN 100 GV1 0.35 0.09 24 0.25 0.06 39 0.14 0.05 46
MN 015 GV2 0.13 0.04 25 0.14 0.04 38 0.11 0.03 40
MN 050 GV2 82 150 0.15 0.04 30 0.10 0.03 30 0.10 0.03 47
MN 100 GV2 0.14 0.04 26 0.10 0.04 31 0.10 0.03 40

TABLE III: Mapping functions for the normalized spherical camera
model

Mapping function Note
Equidistant g(θ) = θ Maintains angular distance.

Equisolid Angle g(θ) = 2sin
(

θ

2

)
Maintains area relations.

Orthographic g(θ) = sin(θ) Maintains planar illuminance.
Stereographic g(θ) = 2tan

(
θ

2

)
Maintains angles.

Rectilinear g(θ) = tan(θ) Equivalent to the pinhole model.

TABLE IV: Experimental comparison between a VO system with
a standard camera and a VO system with a fisheye camera.

dt(ms) n matches track length ATE(m) RTE(m)
Fisheye 48 235 10.1 0.18 0.04

Classical 55 220 9.1 1.4 0.05

of spatial applications, none of these solutions is possible.
The increase of the FoV is directly linked to the number of
sensors, the optics of the camera or the use of a rotating head
on a mast.

In this section, we aim at investigating the improvement
of using fisheye over standard camera. A classical lens can
be modeled by the well known ”pinhole” model. Given a 3D
point in the camera frame x∈R3, the projection function of a
pinhole camera is defined with four parameters { fx, fy,cx,cy}
as

π(x) =
[

fx
x
z

fy
y
z

]
+

[
cx
cy

]
. (4)

However this function cannot represent wide FoV cameras,
as it goes to infinity for points with an angle of view close to
180°. To address this problem, we propose to model fisheye
lens with the normalized spherical model

π(x) =

[
fx

g(θ)x
r

fy
g(θ)y

r

]
+

[
cx
cy

]
,

r =
√

x2 + y2,

θ = arctan2(r,z),

(5)

with g(θ) a function that gives the distance of the pro-
jected point from the optical center given the angle of view.
This mapping function depends on the type of lens used,
a summary of the different mapping functions is given on
Table III. We provide bellow the comparison between these
two models considering both processing time and accuracy.

2) Influence of the Camera model: On our simulated
dataset, both fisheye (with an equidistant mapping function)
and classical camera pairs were simultaneously mounted
on the robot, at the same position and with the same
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Fig. 4: Trajectories returned by our VO in a stereo fisheye setup
and a standard stereo camera setup on the simulated dataset.

Fig. 5: On the left, a Fisheye image from the simulated sequence
and on the right a standard image from the same frame.

orientation. The respective camera resolution are 848×848
and 1280×720 for the fisheye and pinhole cameras. For this
experiment, the tracking design with FAST keypoints was
implemented as it was retained as a good compromise from
the two previous sections. The sequence lasts 200 seconds
and is 70m long. Onboard illumination is simulated and
the images were provided at 10 Hz. This cave environment
is poorly textured and offers challenging conditions for
VO (Figure 5). According to table IV, the fisheye setup
outperforms the standard setup in term of accuracy, number
of feature tracked and length of tracks. On figure 4, we note
that with the classical camera setup, drift can be accumulated
at some points of the trajectory. It is especially the case at
moments when the robot is facing poorly textured surfaces,
many landmark are then lost and the pose estimation is
corrupted. In such cases, the wide angle camera enables to
keep more landmarks in sight to keep a consistent estimate.

V. DISCUSSION

Due to space rover constraints, current state of the art
visual navigation solutions are not directly applicable as they
are too complex and computational power consuming. This
preliminary work discussed some specific points for a simple
VO design and dig into existing works to get some insight for
the development of a VO dedicated to lava tube exploration.
However, some points are left for future research:



• Considering illumination changes, we applied CLAHE
as an image enhancement technique, but other methods
exist. For instance, a simple histogram equalization or
an adaptative gamma correction should be tested [21].

• In this first design, we simply discard measurements
when a frame is removed from the sliding window.
This procedure leads to an information loss that can be
compensated with marginalization [22]. Such an opera-
tion enables to have a prior on our problem for a better
accuracy. But this comes at a certain computational cost
that may be too demanding for spatial application. A
solution for this can be to explore sparsification methods
[23] to make it suitable for our requirements.

• Moreover, as the proposed solution is bi-monocular, the
method is highly dependent on the assumption of a good
rigidity of the transform between the cameras. Under the
constraints of launch, cruise and planetary operation,
the extrinsic cameras calibration may change. Works to
include the calibration as a parameter or using constraint
in the estimation [24] have to be investigated to improve
the global robustness of the system.

• Our conclusions on the choice of the camera lens will
be useful to build an experimental setup for real data
acquisition. With real fisheye images, the question of
which camera model we should choose will be raised.
The presented model is not the only one available [25],
an investigation for an accurate and low computational
model will be needed.

• Finally, the proposed analysis of features, descriptors
and association strategies from this paper will be ex-
tended for real fisheye images to validate our conclu-
sions.

VI. CONCLUSION

This paper presents a modular VO system, able to handle
both pinhole and fisheye cameras, and an experimental study
of some of its essential components. We proposed a simple
design for extra terrestrial lava tube exploration and justified
our choices with comparison experiments on both real and
simulated data with onboard light and in unstructured envi-
ronments. The proposed fisheye based VO solution shows
good performances in simulated data and limits drift in
comparison with a standard setup. Our future work will focus
on image processing, VO back-end and camera modelling to
reduce the estimation step complexity and the global power
consumption.
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