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Abstract— Autonomous navigation in dynamic environments
is a complex but essential task for autonomous robots. Re-
cent deep reinforcement learning approaches show promising
results to solve the problem, but it is not solved yet, as they
typically assume no robot kinodynamic restrictions, holonomic
movement or perfect environment knowledge. Moreover, most
algorithms fail in the real world due to the inability to generate
real-world training data for the huge variability of possible
scenarios. In this work, we present a novel planner, DQN-
DOVS, that uses deep reinforcement learning on a descriptive
robocentric velocity space model to navigate in highly dynamic
environments. It is trained using a smart curriculum learning
approach on a simulator that faithfully reproduces the real
world, reducing the gap between the reality and simulation.
We test the resulting algorithm in scenarios with different
number of obstacles and compare it with many state-of-the-
art approaches, obtaining a better performance. Finally, we try
the algorithm in a ground robot, using the same setup as in
the simulation experiments.

I. INTRODUCTION

Motion planning and navigation in dynamic scenarios is a
complex problem that has not a defined solution. Traditional
planners fail in environments where the map is mutable
or obstacles are dynamic, leading to suboptimal trajectories
or collisions. Those planners typically consider only the
current obstacles’ position measured by the sensors, without
considering the future trajectories they may have.

New approaches that try to solve this issue include promis-
ing learning based methods. Nevertheless, they do not work
properly in the real world: They do not consider robot
kinodynamic constraints, only consider dynamic obstacles
or assume perfect knowledge of the environment. Moreover,
they would need huge real-world data to train the algorithms
for the real world, and generating it is not possible.

We propose a planner that is able to navigate through
dynamic and hybrid real-world environments. The planner
is based on the Dynamic Object Velocity Space (DOVS)
model, presented in [1], which reflects the scenario dy-
namism information. In that work, the kinodynamics of
the robot and the obstacles of the environment are used
to establish the feasible velocities of the robot that do not
lead to a collision. In our approach, the DOVS model is
used in a new planner called DQN-DOVS, which utilizes
deep reinforcement learning techniques. The planner applies
the rich information provided by the DOVS as an input,
taking advantage over other approaches that use raw sensor
measurements and are not able to generalize. Once the agent
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Fig. 1. Scenario of a robot with static and dynamic obstacles and the RVIZ
visualization of the scenario sensed.

learns how to interpret the DOVS, it is able to navigate in any
scenario (it does not need real-world data of a huge variety of
scenarios); and the training weights learned in the simulated
world work as well in real-world environments without fine-
tuning. In addition, it uses a dynamic window in the robot
velocity space to define the set of actions available keeping
robot kinodymanics.

The DQN-DOVS algorithm is trained and tested in a real-
world simulator, where all information is extracted from the
sensor measurements, even the own robot localization. A
comparison of the model with other planners of the state-of-
the-art is also provided, as well as other experiments working
with a real robot, like in Figure 1.

II. BACKGROUND

A. Related work

Motion planners of static and continuous environments
may not be used to deal with dynamic obstacles, as they lead
to collisions and suboptimal trajectories. Some traditional
approaches for dynamic environments include artificial po-
tential fields [2], are probability based [3] or use a reciprocal
collision avoidance (ORCA) [4].

A big group of works are velocity space based. The
Velocity Obstacle (VO), introduced in [5], refers to the set
of velocities of the robot that could lead to collide with
an obstacle that has a certain velocity in the near-future,
which should not be chosen. Based on the VO concept, the
Dynamic Object Velocity Space (DOVS) is defined in [1]
as the velocity-time space for non-holonomic robots, which
includes the unsafe robot velocities for all the obstacles and
the time to collision for computing safe robot velocities in
a time horizon. In the work, a planner based on strategies
is also defined, the S-DOVS. A planner based on basic
reinforcement learning on top of the DOVS is also proposed
in [6], making decisions based on Q-values stored in tables.



Reinforcement learning is a method used to learn to
estimate the optimal policy that optimizes the cumulative
reward obtained in an episode. In [7], the Q-values are
estimated with a deep neural network, defining the first Deep
Q-Network (DQN). Many extensions have been proposed
to this original algorithm. Some works have proven the
best performances of the state-of-the-art, including DQN
with multiple modifications [8], distributed reinforcement
learning [9] or actor-critic methods [10]. The study presented
in [11] shows that combining reinforcement learning with
curriculum learning, could give useful results, specially to
learn problems that could be too difficult to learn from
scratch.

Some works offer analysis of the importance of reinforce-
ment learning in robot motion planning and the limitations
of traditional planners in dynamic environments. Defining
strategies for every situation that may be found in the real
world is intractable, and reinforcement learning may be used
to solve the decision-making problem, which is complex
and has many degrees of freedom. [12] proposes a deep
reinforcement learning model that takes as the input of the
model LIDAR measurements and the position of the goal,
obtaining better results than conventional planners.

The work described in [13] (SARL) simulates a crowd
and try to make the robot anticipate the crowd interactions
with other robots and with each others, comparing its method
with ORCA [4] and other two deep reinforcement learning
methods: CADRL [14] and LSTM-RL [15]. ORCA fails in
this crowded environment due to the need of the reciprocal
assumption, and CADRL fails because it does not take into
account the whole crowd, just a single pair for interaction.
In the environment presented, both SARL and LSTM-RL
have the best performance. In all of these approaches,
the simulators used are non-realistic and no kinodynamic
restrictions are considered.

An example of an approach that considers the restrictions
is [16], which combines deep reinforcement learning with
DWA [17], but only achieving a success rate of 0.54 in sparse
dynamic scenarios.

B. Dynamic Object Velocity Space (DOVS)

The DOVS model presented in [1], which models the
dynamism of the environment, is used as a basis of this
work. To build the model, the robot size is reduced to a
point and the obstacles are enlarged with the robot radius
(the final collision areas are the same). The area swept by
each moving obstacle (collision band) is computed using
the trajectory of the obstacles, which is assumed to be
known or estimated from the sensor information. Then, the
maximum and minimum velocities that can avoid a collision
with that obstacle are calculated, repeating the process for
every obstacle. Using that information with maximum and
minimum velocities of the robot the limits of the Dynamic
Object Velocity (DOV) are obtained. The key of this model is
that the set of free velocities is recomputed in every time step,
so the obstacles’ trajectory estimation needs to be precise
only for the next few time steps.
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Fig. 2. Representation of the state of the agent. The DOVS is in the red
square and the extracted velocity grid below, concatenated to other 8 robot
variables to construct the 408 elements input vector of the learning system.

The velocities in the DOV are unsafe, as they lead to
collisions in a time horizon, while the rest of the velocities
are available to navigate. Velocities inside the DOV could
be chosen if the following commands lead to a free velocity.
The navigation in that space is achieved using a dynamic
window that considers robot kinodynamics. The DOVS is
built including all the information in the robot velocity space,
and it may be represented as seen in Figure 2, inside a
red square. Linear velocities v are in the Y-axis, angular
velocities ω in the X-axis, DOV are in black, the green
rhombus is the dynamic window centered around the robot
current velocity, the green line represents the velocities
(ω, v) that lead to the goal following a circular trajectory
(radius = v/ω), and the big black triangle the differential-
drive kinematic restriction (the robot may not go at maximum
linear and angular velocity at the same time). In this way,
all the information about the dynamism of the environment
and the own robot needed for the robot motion planning is
modeled.

C. Contribution

The works presented in the state of the art have some
limitations when they are to be applied in real environments.
Some of them use only the raw sensor measurements as the
input or use some processed information, like obstacle posi-
tion and velocities. The main problem with those approaches
is the impossibility to generate appropriate real-world train-
ing data. They are trained in non-realistic simulators, and
in different real world scenarios they would not do what to
do. Furthermore, only few approaches do not use holonomic
robots, and even less consider robot kinodynamic restrictions.

The contribution of this work is a deep reinforcement
learning motion planner that:



• Uses a very complete and descriptive information of
the environment as the input, as it is the DOVS. The
information from the obstacles is extracted with an
obstacle tracker in the same simulation and the real
world from the laser sensor measurements, and used to
build the DOVS (with safe and unsafe velocities). Once
the agent learns how to interpret the DOVS, it will be
able to navigate in any kind of real-world scenario with
the same trained weights (overcoming the unsolvable
the problem of generating real-world data).

• Takes into account dynamic and static obstacles (people,
robots, walls...).

• Is trained in a realistic simulator, considering occlusions
and obstacle velocities estimation errors.

• Publishes differential-drive motion commands that take
into account kinodynamic restrictions of the robot.

• Is able to brake considering the deceleration constraint
when it is reaching the goal (others do not, as they they
do not consider kinodynamic constraints).

• Receives all the information from sensors.

III. APPROACH

A. State and action spaces

The state should describe the environment. In our ap-
proach, the DOVS is used as the main part of the state to
model the needed information of the obstacles in a fixed
way. Using raw velocity information of obstacles would
require training with obstacles with every possible shape,
velocity or radius a robot could face, which is impossible;
so using the DOVS is a big advantage. The information of
safe and unsafe velocities are extracted from the DOVS as a
20x20 grid, assigning value of 1 to free velocities and -1 to
obstacle velocities (DOV), to keep the relationships between
the velocities in the velocity space. Other few variables are
also added to the state, to describe the current robot situation
and the information of the closest obstacle in case there
is an imminent collision. The whole state is represented in
Figure 2.

The action space chosen is a discrete action set, relative
to the current robot velocity and using the rhombus dynamic
window (DW), to respect real robot kinodynamics. There are
up to 8 available actions defined. 5 may be always chosen:
The 4 corners of the DW (using maximum accelerations)
and keeping the current velocity. The other three are only
available if the velocities that lead to the goal are in DW:
The two intersections of the line that leads to the goal with
the dynamic window (maximum and minimum velocities for
the next control period) and heading the goal with the current
linear velocity. The whole set is represented in Figure 3. It
is chosen as they are the actions that are more likely to
be taken by natural trajectories, suitable for any differential
drive robot. It is a discrete space instead of continuous to
simplify the problem to improve training.

B. DQN-DOVS

The deep reinforcement learning algorithm chosen for
the implementation is a Deep Q-Network with extensions,

Fig. 3. Action set in the DQN-DOVS algorithm.

similar to the Rainbow DQN [8], as it offers results compa-
rable to all the state-of-the-art in most of the problems with
discrete action spaces. A decaying ϵ-greedy strategy is used
to balance exploration and exploitation.

The extensions used from the original DQN approach
are Huber loss [18] (more robust to outliers), Double Q-
learning [19] (avoiding the overestimation of the Q-values),
Prioritized Experience Replay, [20] (sampling more often
transitions the agent may learn more from), Dueling DQN
[21] (using the advantage function to compute the Q-values)
and N-step bootstrapping [22] (bootstrapping the reward of
several steps in the target value computation). Invalid actions
(actions that lead to the goal when they are ineligible) are
also taken into account in both the policy (what action to
choose) and the target error computation to update the net-
work weights. To do it, the invalid actions of each transition
are stored in the replay buffer.

The Q-network is divided in three different parts sequen-
tially connected: A feature network, a linear network and
a dueling network. The feature network process separately
the parts of the state. The DOVS image is fed into a
convolutional network to extract the relationships among safe
and unsafe velocities that are close to each other in the
velocity space. The other 8 state variables are processed with
a fully connected layer to exploit the relationships among
them and increase their importance in the decision process.
The outputs of both streams are concatenated into a linear
network, which combines them. Finally, the dueling network
computes the final Q-values of the actions by computing the
state value and the advantage values in two streams. The
structure of the network is shown in Figure 4.

C. Reward function
The goal of the agent is reaching and stopping in the

goal while avoiding collisions in the shortest time possible.
To achieve this behavior, the reward functions proposed in
[23] and [24] are used as inspiration. It is defined with a
simple equation that discriminates between terminal and non-
terminal states:

rt =


rgoal, dtgoal < 0.15 and

vt < 0.2
rcollision, collision detected
−rdist∆dtgoal + rtsafedist, otherwise

(1)
The robot receives a reward of rgoal, set to 15, when it
reaches and stops in the goal, using thresholds for the
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Fig. 4. The structure of the network of the DQN-DOVS.

distance of the robot to the goal, dtgoal, and for the linear
velocity, vt; and a negative reward of -15 when it collides
(rcollision). Reward shaping is used to accelerate training in
non-terminal states by encouraging the agent to get closer
to the goal (∆dtgoal is the increment in the distance to the
goal in consecutive time steps, rdist is set to 2.5), and by
penalizing the agent if it is too close to an obstacle (dtobs is
the distance of the robot to the closest obstacle):

rtsafedist =

{
−0.1|0.2− dtobs|, dtobs < 0.2
0, otherwise (2)

D. Training the network

The policy is trained in a modified version of the Stage
simulator, which allows simulating robots similarly to the
real world. An extended version of the work proposed by [25]
is used to detect static and dynamic obstacles and estimate
their position, radius, heading angle, angular and linear ve-
locity in real time, from 2-D LIDAR measurements.Training
in this kind of conditions makes the robot face occlusions or
estimation errors already in training.

The training approach proposed in [24] has been used as
influence to design the curriculum learning strategy applied
for training. In our work, the policy has been trained in a
8x8 m scenario delimited with walls; with random positions
for the robot, its goal and the other obstacles (and random
obstacle velocities). The stages used are shown in Table I,
trying to make the agent progressively learn how to reach
the goal, avoid static obstacles and avoid dynamic obstacles;
to fine-tune everything in the last stage. The distance to the
goal and number of obstacles is also progressively increased
inside some stages; and the ϵ value is decayed or not,
depending on whether the task to learn is new.

IV. RESULTS

A. Training details

The agent was trained in the way presented in Section III-
D. If the simulation took more than 500 time steps, the

Episodes Distance ϵ Obstacles Type
1000 1 to any Decay 0 –
1000 Any Decay 0 to 12 Static
1000 Any 0.05 0 to 12 Static
1000 Any Decay 0 to 12 Dynamic
1000 Any 0.05 0 to 12 Dynamic
2500 Any 0.05 Random Both

TABLE I
CURRICULUM LEARNING STAGES

episode was finished (the robot gets stuck). The time step is
set to 0.2 s. The dynamic obstacles had a predefined random
linear and angular velocity each and may not avoid the agent.
The network converges in about 10 hours in a computer with
a Ryzen 7 5800x processor, a NVIDIA GeForce RTX 3060
graphics card and 64 GB of RAM. The key parameters used
are a decaying learning rate of 0.0003 to 0.0001 with an
Adam optimizer [26], discount factor of 0.97, n-step of 5
and a period of 100 to update the target network.

B. Simulation evaluation

To evaluate the model, different open source implemen-
tations of other methods have been used. We compare
our DQN-DOVS method with S-DOVS [1], the LSTM-RL
(LSTM-RL-D) implementation of [15], the SG-D3QN [27],
and the implementations of ORCA, SARL, CADRL and
LSTM-RL (LSTM-RL-H) offered in [13] with the weights or
the training scripts they provide. DQN-DOVS and S-DOVS
consider every kind of kinodynamic restrictions, LSTM-RL-
D and SG-D3QN only consider differential drive restrictions
(but, for example, use infinite acceleration) and the rest do
not consider any restriction and are holonomic. They are
tested with the restrictions they consider.

(a) RVIZ and Simulator (b) Trajectories

Fig. 5. Scenario of a DQN-DOVS red agent and 15 dynamic obstacles.
The final position of the robot and obstacles are marked with a X. Obstacle
poses and velocities relative to the robot are computed from the simulated
on board LIDAR sensor.

The methods have been tested in 200 episodes of the same
kind of scenarios and obstacles described in Section IV-A,
varying the number of agents, from 1 to 15 with 85% of the
obstacles being dynamic (the same set of scenarios for every
method). Although the scenarios may seem similar visually,
what the robot perceives is completely different, depending



on the obstacles density and velocities. The results obtained
are shown in Table II, with the success rate and the consumed
time rate with respect to the DQN-DOVS.

The results show that the new DQN-DOVS algorithm
outperforms the rest of the state-of-the-art algorithms; even
though the DQN-DOVS agent may not go through the
walls (some agents do), it takes into account acceleration
constraints and needs to brake to stop in the goal. Moreover,
it performs better even being differential drive (while LSTM-
RL-H version performs better than LSTM-RL-D with the
only difference of being holonomic).

One of the differences between the new DQN-DOVS
and the other algorithms is they assume perfect information
knowledge. The results show that our method is the one
that deals the best with those limitations, by moving in
a way that both reduces occlusions and estimation errors
and is less risky. The results also show that the premise
on which this work is based is correct. The models that
use raw or barely processed information as the input of
the reinforcement learning algorithm do not perform suc-
cessfully when the environment changes, while using the
pre-processed information as DOVS generalizes better to
any scenario. The DQN-DOVS improves strategies based
methods as S-DOVS by using deep reinforcement learning,
and other learning methods by using the DOVS.

DQN-DOVS is faster than the other algorithm that con-
sider kinodynamic restrictions (S-DOVS). Times of LSTM-
RL-D are comparable, even though LSTM-RL-D assumes
no acceleration constraints (and success rates are not close).
The SG-D3QN algorithm perform very risky maneuvers and
very short trajectories, because it assumes the obstacles are
going to behave exactly like the ones seen in training (with
no occlusions or estimation errors too), and that is why its
success rates are so low and it is so fast, as well as its lack of
acceleration constraints that makes it have maximum velocity
at any time. The time with respect to the other methods is
not comparable because they do not have constraints and
are holonomic. An example of behavior of the DQN-DOVS
agent in a random scenario may be seen in Figure 5.

C. Real robot experiments

The whole system was integrated in a Turtlebot 2 platform
with a NUC with Intel Core i5-6260U CPU and 8 GB
of RAM. The sensor used is a 180º Hokuyo 2D-LIDAR.
The approach taken from the beginning of the work was
applying the simulation similarly as in the real world, using
ROS. Thus, the same network weights and nodes used in
simulation were used in the ground robot, adapting the
obstacle tracker node to detect people and other objects and
using AMCL for localization.

The experiments performed were setting the robot in a 8x8
m scenario where it had to navigate through different goals
dynamically sent. Several people were wandering, acting as
dynamic obstacles, and they were told not to look at the
robot so that the avoidance was completely performed by it.
In Figure 6, the robot velocity profiles during a time period
in a experiment are shown, where the robot clearly respects

the differential-drive kinodynamic restrictions, as it speeds
up or decelerates respecting the acceleration constraints. In
that specific situation, three moving obstacles surround the
robot. The robot takes into account the obstacles trajectories
and accelerates, turns to the right (second 3) and to the left
(seconds 6, 11), and accelerates again, avoiding collisions
successfully. The experiments performed show that the robot
tries to predict obstacles trajectories in advance, and choose
natural trajectories with maximum velocities to reach the
goal, instead of avoiding obstacles clearly stopping and
turning as other planners.

(a) Linear velocity (b) Angular velocity

(c) Pictures of the interval.

Fig. 6. Velocity measurements of the real robot in a short interval of time.

V. CONCLUSION

This work presents a motion planner and navigation al-
gorithm for dynamic environments, that uses a differential
drive robot, and the DOVS to model the environment as an
input of a deep reinforcement learning technique to select the
motion commands that lead the agent to reach the goal whilst
avoiding collisions in the lower time possible. In addition, it
proposes a training framework that uses curriculum learning
in realistic scenarios to help the network to converge. The
work is tested in random scenarios in a simulator where all
the information is captured using a 2-D LIDAR sensor as
in real life, outperforming existing methods that should have
advantage, as they do not consider kinodynamic constraints
of the robot and some of them use holonomic robots. The
algorithm is also tested in a ground robot walking through
pedestrians. Future work will include extending the model to
collaborative collision avoidance with multi-robot navigation,
trying more complex algorithms, and adapting the model for
3-D navigation and UAV (the model and the approach is
extensible for 3-D spaces).
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