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Abstract— Combining various types of sensors enables a
robot to obtain plenty of information on input and exploit values
in different ways. This information can be utilized to increase
the accuracy of the simultaneous localization and mapping
(SLAM) in unstructured environments. In this paper, we
introduce a SLAM framework for tightly-coupled radar-LiDAR
odometry via smoothing and mapping, which can redeem each
data from radar and LiDAR. Our framework initially processes
radar and LiDAR in parallel. Phase correlation can estimate
relative pose between two radar polar images. LiDAR scans are
marginalized and keyframes are selected for pose optimization.
With the keyframe features, the relative poses between the
adjacent scenes are optimized. After estimating relative poses of
each sensor, radar odometry is synchronized and concatenated
with LiDAR keyframes to exploit a factor graph. Finally, a
keyframe pointcloud and optimized poses generate 3D map.
We evaluate our SLAM framework’s performance with LiDAR-
based SLAM on five sequences based on two datasets.

I. INTRODUCTION

Efforts to raise the accuracy of odometry in SLAM were
conducted with various sensors such as camera, LiDAR,
radar, and thermal camera. With these achievements, existing
SLAM frameworks offer low odometry error in general
environment. However, errors still exist, and higher accuracy
is required for 3D map production or autonomous driving.
One way to obtain accurate odometry is to exploit various
types of sensors simultaneously. Among the autonomous
driving sensors, we focus on radar sensors and LiDAR.

For the LiDAR sensor-based SLAM framework, the sur-
rounding 3D environment is scanned with high accuracy
and generates a dense point cloud. Moreover, calibration
is less critical than vision sensors, and the framework
has the advantage of being largely invariant to illumina-
tion change. For these reasons, there has been much re-
search into performing SLAM based on LiDAR sensors,
such as Lidar Odometry and Mapping (LOAM) [1] and
Lightweight and Ground-Optimized Lidar Odometry and
Mapping (LeGO-LOAM) [2]. However, the LiDAR sensor
fails to detect the surrounding environment in harsh situations
such as foggy weather. This causes a high error in the sight
of odometry, which leads to a low uncertainty in points. On
the other hand, a radar sensor works better in a harsh envi-
ronment by using wider wavelengths. In particular, the recent
development of the radar odometry method [3] has improved
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Fig. 1: We visualize the results of the proposed method
and the two raw radar images scanned at poses A and
B highlighted on the 3D map. Exploiting each raw radar
image, we can estimate the x, y, and yaw values between
pose A and B. After that, the relative pose between A
and B can concatenate adjacent LiDAR keyframes if time
synchronization is confirmed. The trajectory of our method
(green) is more accurate and robust to z-axis rotation than
the trajectory of LeGO-LOAM (blue).

accuracy in foggy environments. Although the radar sensor
seems to be a great solution for map construction, a problem
still exists due to the limitation in resolution.

In this paper, we propose a SLAM framework for tightly-
coupled radar-LiDAR odometry via smoothing and mapping
to redeem each LiDAR and radar sensor’s aforementioned
shortcomings. Radar and LiDAR odometry are processed in
parallel. Exploiting phase correlation and feature extraction,
the relative pose between each sensor’s frame can be es-
timated. Then, radar factors are synchronized with LiDAR
keyframes to estimate which frames have to be linked.
Pointcloud is transformed to global coordinate from LiDAR
coordinate through the exploitation of odometry which is
optimized via factor graph and the transformed pointcloud
constructs a 3D map. Fig. 1 shows the output and radar
images used to estimate pose. The novelty of this paper
includes the following:



• We suggest a SLAM framework that integrates LiDAR
and radar sensors using a factor graph.

• Keyframes selected from LiDAR are concatenated with
radar odometry using time synchronization between
LiDAR and radar.

• Our framework is evaluated under two datasets[4][5]
and outperforms the LiDAR-based method.

II. RELATED WORKS

A. LiDAR-Based SLAM

In the case of LiDAR SLAM, the relative positions of adja-
cent pointclouds are compared using Iterative Closest Point
(ICP) [6], Generalized Iterative Closest Point (GICP) [7],
and Trimmed Iterative Closest Point (TrICP) [8] to track
their locations. Although high accuracy can be obtained by
comparing the entire pointcloud, it is impossible to perform
SLAM in real time due to the disadvantage of high time
complexity. Therefore, Yokozuka et al. [9] and Dellenbach
et al. [10] attempted to redeem time complexity for LiADR
mapping. Similar to detection and use of features in Visual
SLAM [11][12][13], points, lines, and planes are detected
and exploited for real-time LiDAR SLAM. In LOAM [1],
planar and edge features extracted from the pointcloud are
used to estimate the relative pose. However, there is a
disadvantage in that it takes a long time to detect the features.
Behley and Stachniss [14] proposed surfel-based LiDAR
mapping system with efficient loop closure detection. An
improved version of LOAM is LeGO-LOAM [2]. The overall
method is similar to that of LOAM, but it develops feature
extraction by segmenting each point. Calculation time is also
reduced by exploiting the Levenberg-Marquardt algorithm,
and the stability of the SLAM is increased by adding loop
closing. Some of our framework is similar to LeGO-LOAM.
However, in the case of pointcloud, since distortion can
easily occur due to external vibration or rotation, the detected
features also have distortion.

Another sensor that can compensate for the distortion
is needed, as the error can have a significant impact on
the result if it continues to accumulate. In the Robo-
centric Lidar-Inertial State Estimator (R-LINS) [15], the
Tightly Coupled Lidar Inertial Odometry and Mapping
(LIOM) [16], the Tightly Coupled Lidar-Inertial-Ranging
Odometry (LIRO) [17], and the Tightly Coupled Lidar-
Inertial Odometry via Smoothing and Mapping (LIO-
SAM) [18], accuracy is greatly improved through more active
use of the IMU. IMU preintegration is used to calculate
IMU values between two frames as a single relative position
change, and this helps to solve computational complexity
while reducing the repetition of calculations and unnecessary
variables such as multiple point clouds. Tightly-coupled
Lidar-Visual-Inertial Odometry via Smoothing and Mapping
(LVI-SAM) [19] additionally exploits camera sensor to im-
prove accuracy. Our framework utilizes radar sensors with
LiDAR to reduce error.

B. Radar-Based SLAM

Radar-based SLAM has developed with the two main
types of radars. The first is automotive radar, which has the
advantage of giving Doppler information and radial velocity,
but has the disadvantage of low accuracy and sparseness.
The second is scanning radar, which gives a raw power-
range image. Scanning radar has the high angular and range
resolution, however, output images are noisy and the radar
does not give velocity information. Due to the differences
between the two sensors, various papers have addressed
each of the shortcomings. For automotive radar, Holder
et al. [20] proposed static target extraction and radar motion
estimation. Radar pointcloud-based scan matching and pose
graph optimization enhanced the accuracy of odometry. Park
et al. [3] utilized radial velocity information to estimate
3d-ego motion. Unlike automotive radar based methods,
most scanning radar-based methods utilize image processing.
Therefore, various studies using the scanning radar have
been attempted[21][22][23]. Among the studies, the currently
highest performing studies are proposed by Barnes et al. [24]
and Adolfsson et al. [25]. The learning-based method [24]
shows a masking network that enhances radar images for
odometry prediction. There is a filtering method [25] that
computes the k-strongest points and oriented surface points.
Since the angular information from scanning radar retains
high accuracy, our radar factor for LiDAR SLAM stands on
the basis of scanning radar.

III. METHODOLOGY

A. System Overview

To enable odometry estimation, we combine two individ-
ual sensors: radar and LiDAR. Since the wavelengths of the
radar and LiDAR are different, we can reduce the estimation
failure for various environments. The entire process can be
divided into three parts: 2D pose estimation with a radar
factor, 3D pose estimation and refinement with a LiDAR
factor, and optimization with time synchronization exploiting
the pose graph. Fig. 2 illustrates the entire framework. The
robustness of our odometry relies on the radar. By calculating
the phase correlation of the radar data, we directly estimate
the relative motion between the keyframes. We generate
a radar factor for both the adjacent frame and the frame
located far from the current frame to obtain a reliable relative
pose. The radar factor compensates for the error from the
LiDAR feature-based pose refinement. To compute accurate
odometry, we sync the radar and LiDAR factor values and
optimize the pose graph.

B. Radar Factor

To calculate the ego motion between two radar scans,
we conduct a phase correlation method, introduced by Park
et al. [26]. When the polar image of the radar is published,
we first down-sample the image to make coarse cartesian
and log-polar images. Each coarse image produce an initial
∆x,∆y information and ∆θ by Fourier Mellin Transform
(FMT). Noise elimination and context emphasizing are con-
ducted during phase correlation operations. Calculated terms



Fig. 2: A block diagram of the proposed method. It is divided into three parts: Radar Factor, LiDAR Factor, and Time
Synchronization. The system starts with radar sensor and LiDAR inputs. In the case of radar, utilizing phase correlation,
the system calculates the most accurate relative pose between current frame and a frame from the past, but not adjacent
frame (see Section III-B). Simultaneously, the system preprocesses the LiDAR point cloud by removing noise points and
extracting features in a way similar to LeGO-LOAM and obtaining relative pose between previous and current keyframes by
optimizing the poses of each feature point (see Section III-C). The LiDAR factor directly passes to the pose graph. However,
it should be confirmed whether radar factor is time synchronized with the LiDAR factor for passing to the pose graph (see
Section III-D). Finally, the Keyframe pose can be exploited to construct a 3D map.

are used for translation refinement in full cartesian images.
Finally, we receive scanning radar-based ego motion values.
We omit the radar keyframing process, since the LiDAR
SLAM controls the entire system. Thus, radar factor is given
as

F r
ki = (trk, t

r
i , xki, yki, θ

yaw
ki ) (1)

tri is the time of the current frame index and trk is the
time of the previous frame index. xki, yki, and θyawki are
the ego motion values between two frames, k and i. Since
the scanning radar generates a 2D top-down view image,
the radar rotation factor only contains yaw information.
Generated radar factors are inserted in the LiDAR keyframe
to optimize the pose graph.

C. LiDAR Factor

Let Pt = {p1, p2, . . . , pn} be the pointcloud scanned by
LiDAR at time t, and let pi be the individual point of
pointcloud Pt. In Pt, there are unnecessary points when
the system compares each frame’s points. For example,
small objects such as leaves may not be found at the
same place in consecutive frames, so these points are not
reliable. Moreover, points reflected by the ground are not
uniform, so they should not be included in pose estimation.
Pt must consider only reliable points such as tree trunks.
To select certain points P̃t, two methods are exploited: (1)
Ground segmentation, (2) Point clustering. Ground points
can be segmented by constructing a range image based on ri,
which is the euclidean distance between sensor and pi and

conducting a column-wise evaluation[27]. After that, non-
ground points are clustered. Point clusters are selected unless
the cluster has fewer than 30 points.

Planar and edge features at time t, Sp
t and Se

t are extracted
by calculating the roughness in P̃t. Roughness is a curvature
information of each point. If the roughness of points is larger
than threshold, it can be segmented as planar features. On
the contrary, points which have a roughness smaller than
threshold can be segmented as edge features. St is defined as
frame at time t and includes features St = {Sp

t , S
e
t }. Because

we select a way similar to [2], a more detailed procedure for
feature extraction can be found in [2].

Computation complexity is too high when feature match-
ing is performed on all frames. Therefore, a frame that
satisfies our condition is selected as a keyframe, and frames
between keyframes are ignored. The frame is selected as
keyframe if it has moved more than τd or passed time τt
from the lastest keyframe. In this paper, we set the (τd, τt) =
(1m, 1s). If a frame at time j is selected as keyframe index
i, Ki = Sj and Ki represents the current robot’s status xi.
In this framework, a frame is selected when no keyframe is
generated within 1m.

After a keyframe is selected, relative pose can be esti-
mated between the current keyframe and adjacent previous
keyframes. The transformation between two keyframes is
found by performing point-to-edge and point-to-plane match-
ing. The correspondences from F e

i and F p
i to F p

i+1 and F e
i+1

are confirmed by the way in [1] and labels clustering in the



segmentation stage.
The Levenberg-Marquardt(L-M) method is applied to find

the transformation which minimizes feature distances. Ex-
ploiting the point correspondence, distances between each
keyframe’s feature can be expressed.

dea =
|(pei+1,a − pei,b)× (pei+1,a − pei,c)|

|pei,b − pei,c|
(2)

dpa =
|(ppi+1,a − ppi,b) · {(ppi,b − ppi,c)× (ppi,b − ppi,d)}|

(ppi,b − ppi,c)× (ppi,b − ppi,d)
(3)

pi+1,a is a feature point in the current keyframe, while
pi,b, pi,c and pi,d are feature points in the previous keyframe.
[z, θroll, θpitch] can be optimized by forming a line from
pi,b and pi,c in (2). On the other hand, [x, y, θyaw] can be
optimized by representing a plane from pi,b, pi,c and and
pi,d in (3). After initially performing an optimization to
equation (3), (2) is optimized while using [z, θroll, θpitch]
as constraints. Then, the relative transformation which is
LiDAR factor (4) can be achieved. The detailed description
is found in [2].

FL
i,i+1 = (tLi , t

L
i+1, xi,i+1, yi,i+1, zi,i+1, θ

roll
i,i+1, θ

pitch
i,i+1 , θ

yaw
i,i+1)

(4)

D. Time Synchronization

To achieve a more accurate pose in the keyframe, FL

should be concatenated with F r. If each factor’s time is
closer, synchronization will be reliable. However, because
of the sensor frequency of the scan, factors have time
differences with another factor. Therefore, in user-defined
thresholds, cth and csum are set to synchronize F r with FL.
If cth is smaller than the time difference between two factors,
F r at that time is neglected. We had to set an appropriate
cth value. If cth is too small capturing F r adjacent to FL is
challenging. Moreover, an opposite case becomes worthless
for synchronization. Thus, we limited the time difference
condition as (5).

|trj −tLi | < cth and |trk−tLi+1| < cth with F r
jk, F

L
i,i+1 (5)

This being so, to alleviate the harsh condition mentioned
earlier, we add another condition so that the sum of the
difference between the start and end of each factor’s time
difference does not exceed csum.

|trj − tLi |+ |trk − tLi+1| < csum with F r
jk, F

L
i,i+1 (6)

Passing conditions (5) and (6), the factor graph receives
F r and optimizes. The features S in K transform to S̃
exploiting the pose from the factor graph, and the final map
is composed of S̃.

(a) Lego-Loam

(b) Radar-Lego-Loam

Fig. 3: (a) LeGo-LOAM odometry estimation result with
ground truth. (b) Proposed odometry estimation result with
ground truth. The proposed method depicts a more reliable
odometry result for rotation.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We conducted our odometry estimation method with pub-
lic radar-LiDAR datasets: Oxford Radar Robotcar[5], and
MulRAN[4]. The Oxford radar robotcar dataset is the most
popular and widely used dataset for radar navigation re-
search. The dataset contains four point-grey cameras, one
GPS receiver, four LiDARs, and one imaging radar. Data is
acquired from one location, and the time interval between
sequences is short. The MulRan dataset is a long-term
driving dataset for radar and LiDAR. Unlike the Oxford
dataset, MulRan provides a multiple urban environment, and
the time interval between sequences is large. Verification
proceeded with five different sequences. The sequences in
the Oxford radar dataset are acquired from a single space.
However, MulRan data is obtained from multiple places.
For verification in a variety of environments, we selected
four MulRan dataset sequences (DCC, KAIST, Riverside1,
Riverside2), and one Oxford radar dataset sequence. The
sample odometry estimation result is depicted in Fig. 3. The



(a) DCC (b) KAIST (c) Oxford

(d) Riverside1 (e) Riverside2

Fig. 4: All odometry estimations and comparison for each sequence.

trajectory for Fig. 3 is the KAIST region in the MulRan
dataset, which contains various road types with curves.

B. Evaluation

Our algorithm was verified by comparing a pose from
the SLAM framework LeGO-LOAM[2]. Since our method
focuses on rotation correction, a single LiDAR odometry
method could depict a perceptible difference. We enhanced
the LeGO-LOAM algorithm with a radar rotation factor
and time synchronization. By plotting the odometry outputs
in one figure, we evaluated the qualitative performance of
the proposed method. This will allow us to check how the
odometry tendency has improved. For quantitative analysis,
we utilized the RPG trajectory evaluation method[28], which
calculates the absolute trajectory error (ATE) for each se-
quence. We obtained both the translation and rotational error
with regard to GPS ground truth.

C. Qualitative results

Fig. 4 depicts our odometry results for each sequence.
Compared to LeGO-LOAM, the overall result is refined with
regard to GPS ground truth. All odometry information is
neatly arranged after the radar factor is added. A detailed
analysis can be observed in Fig. 5. Although the trans-
lation values have some differences from ground truth in
small patch, the proceeding rotation consistently shows high
accuracy. In particular, the given radar factor enables the
maintenance of parallel odometry with ground truth. These
small-scale differences in accuracy converge to reduce the
overall translation error.

Fig. 5: Partial odometry result. LeGO-LOAM was confirmed
that errors occurred in the rotation angle, while the proposed
method retains parallelism with the ground truth value.

D. Quantitative results

For quantitative analysis, Table. I and Table. II depict
RMSE translation and rotation error. By refining the rotation
of the original LiDAR odometry, the shape of radar-enhanced
odometry becomes more correlative to the ground truth
value. This alteration brings the reduction of the entire
translation error, as shown in Table. I. Unlike in the trans-
lation error, we can observe marginal improvements in the
rotational error. However, as mentioned above, the proposed
method is robust for a curvy road, and this enhancement is
depicted in the KAIST sequence in Table. II. As the result
of the RMSE error, we can observe that small flaws from
every moment generate a big difference in the result.

V. CONCLUSION

We have proposed a methodology for refining radar angu-
lar factor-based LiDAR odometry. We estimated the rotation
between keyframes with radar image phase correlation and



TABLE I: RMSE translation error w.r.t GPS [m]

DCC KAIST Oxford River 1 River 2
LeGO-LOAM 25.817 38.356 40.352 152.488 112.116

Proposed 24.870 31.855 28.951 124.497 94.965

TABLE II: RMSE rotation error w.r.t GPS [deg]

DCC KAIST Oxford River 1 River 2
LeGO-LOAM 7.834 8.672 28.593 15.289 170.058

Proposed 8.26 5.534 28.485 14.174 171.776

tightly coupled with the LiDAR factor. The radar factor and
LiDAR factor synchronized with the time threshold, and the
factor graph optimization enhanced the resulting odometry.
Our result effectively prevented rotation warp, and reduced
the translation error indirectly. For future work, experiments
should be conducted in a harsh environment to verify our
contributions. To evaluate organized accuracy, data has to
be acquired in two completely different environments, i.e. a
sunny day and a foggy day. Also, we will complement our
methodology and quantitative analysis. We published high-
cost radar information; however, the system will generate a
more precise result when the radar keyframe is added. We
will apply our approach to various methods for the estimation
of LiDAR odometry.
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