
SectionKey: 3-D Semantic Point Cloud Descriptor for Place Recognition

Shutong Jin∗, Zhenyu Wu∗, Chunyang Zhao, Jun Zhang, Guohao Peng, and Danwei Wang, Fellow, IEEE

Abstract— Place recognition is seen as a crucial factor to
correct cumulative errors in Simultaneous Localization and
Mapping (SLAM) applications. Most existing studies focus
on visual place recognition, which is inherently sensitive to
environmental changes such as illumination, weather and sea-
sons. Considering these facts, more recent attention has been
attracted to use 3-D Light Detection and Ranging (LiDAR)
scans for place recognition, which demonstrates more credibility
by exerting accurate geometric information. Different from
pure geometric-based studies, this paper proposes a novel global
descriptor, named SectionKey, which leverages both semantic
and geometric information to tackle the problem of place
recognition in large-scale urban environments. The proposed
descriptor is robust and invariant to viewpoint changes. Specif-
ically, the encoded three-layers key serves as a pre-selection
step and a ‘candidate center’ selection strategy is deployed
before calculating the similarity score, thus improving the
accuracy and efficiency significantly. Then, a two-step semantic
iterative closest point (ICP) algorithm is applied to acquire
the 3-D pose (x, y, θ) that is used to align the candidate point
clouds with the query frame and calculate the similarity score.
Extensive experiments have been conducted on public Semantic
KITTI dataset to demonstrate the superior performance of our
proposed system over state-of-the-art baselines.

I. INTRODUCTION

Place recognition is critical for various robotics missions
(e.g., loop closure detection in SLAM [1], global localization
[2], [3], and collaborative mapping [4]–[6]). By detecting
loop pairs, the autonomous robots can eliminate drifting er-
rors and wrong registrations of certain landmarks, after which
a globally consistent map can be created [7], [8]. Current
studies on place recognition can be roughly categorized into
image-based [9]–[12] and LiDAR-based methods [1], [7],
[13]–[17]. Due to the intrinsic characteristics of camera,
the image-based methods are greatly affected by external
factors such as illumination and viewpoint variations [18]–
[20], while LiDAR-based methods are relatively robust to
appearance changes [21]. In light of this, there has been an
increasing interest in LiDAR-based methods recently.

The majority of existing LiDAR-based place recognition
algorithms works by encoding geometric features of point
clouds into global or local descriptors, and then matching
those descriptors. The current methods have been mostly
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Fig. 1. An illustration of place recognition in urban environments, where a
reverse place recognition task in sequence 08 of Semantic KITTI dataset is
successfully accomplished by our proposed method. It is worth mentioning
that the heading directions of frame #787 and frame #1426 are nearly the
exact opposite, which poses great challenges to existing methods.

restricted to exploring global or local features such as coor-
dinates [13]–[15], surface characteristics [7], [22], and other
low-level geometric features [16]. Currently, there are three
challenging issues to be considered for LiDAR-based place
recognition methods. First of all, most of the geometric-
based solutions fail to build up the connection between
human perspective and machine vision, thus leaving semantic
information unused [18]. Secondly, the designed descriptors
need to be rotational invariant to handle viewpoint changes
[14]. Thirdly, the small translation between point clouds
should not be neglected since it is likely to have strong
impacts on place recognition results [20].

This paper aims to address the aforementioned issues
of LiDAR-based place recognition. Although high-level se-
mantic information has proven to be effective in boost-
ing place recognition performances, semantic-based LiDAR
place recognition methods are still few [17], [18], [20], [23]
and how to use the semantics more effectively remains an
open issue [24]. Inspired by how humans identify places,
we propose a novel global descriptor named SectionKey,
which leverages both semantic and geometric information,



Fig. 2. Flowchart of the proposed system. The proposed system mainly consists of two submodules: 1) Descriptor Construction: construct the novel
three-layers global descriptor SectionKey (rKey, tKey, pKey) with both semantic and geometric information. Label 13, 14, 16, 18, 19, 20 denotes the class
of building, fence, trunk, pole, traffic-sign, and lane-marking, respectively; 2) Candidates Selection: select the candidate locations. The Similarity Scoring
part denotes the semantic scan context score calculation module adopted from [20].

to address the problem of place recognition in large-scale
urban environments. Prior to the encoding, we select points
with certain labels and project them to the x-y plane, then
perform the clustering. After the clustered point cloud being
segmented azimuthally, we will encode them in both radical
and peripheral way that eventually ending up with a rotation-
invariant three-layers key, which serves perfectly as the pre-
selection procedure. The main contributions of this paper are
listed as follows:

• We propose the SectionKey, a novel rotation-invariant
global descriptor with three-layers which exploits both
semantic and geometric information.

• We formulate a novel place recognition framework,
which comprises a Descriptor Construction submodule
with a three-layers key and a Candidates Selection
submodule with a ‘candidate center’ strategy.

• We perform extensive experiments on the Semantic
KITTI dataset. Overall evaluations confirmed that the
proposed method outperforms state-of-the-art baselines.

II. METHODOLOGY

In this paper, we propose a novel semantic global descrip-
tor named SectionKey and the workflow of the proposed sys-
tem is shown in Fig. 2. In the first Descriptor Construction
part, we encode both the spatial and semantic information
of point clouds to form a three-layers key, which serves
perfectly as a pre-selection step. For the second Candidates
Selection part, we perform an efficient ‘candidate center’
selection strategy, where the score calculation module from
SSC [20] is adopted as an auxiliary scoring module.

A. Descriptor Construction

Preparations A frame of point cloud C can be defined as
{c1, c2, ..., cn |ci ∈ C}, which comprises a series of points
within it. For point ci, it is defined as (xi, yi, zi, li), with
geometric reading [xi, yi, zi] and semantic label li, as shown
in Fig. 3(a). Then we will project the points with label li =
13(building), 14(fence), 16(trunk), 18(pole), 19(traffic−
sign), 20(lane − marking) to the x-y plane, as shown in
Fig. 3(b), then convert them into polar coordinate as we
only want to select the points that maintain static structural

information. Suppose ck is one of the projected points, we
can obtain:

ck = [xk, yk, ρk, θk, lk] (1)

ρk =
√
xk

2 + yk2 (2)

θk = arctan
yk
xk

(3)

where ρk and θk denote the polar diameter and polar angle,
respectively. Then we will perform KD-Tree clustering for
points with different labels respectively to make it unaffected
by partial missing points. The clustering parameters set for
different labels are listed in Tab. I. Note that in order to
accelerate the process of clustering, points with label 13 and
label 14 undergo a downsampling procedure before the clus-
tering. As we mentioned before, we want to keep the crucial
geometric information as well as reduce the computational
load. Therefore, our algorithm preserves landmarks (pole,
traffic-sign, lane-marking) as much as possible. This is why
items like traffic-sign and lane-marking are easier to form a
cluster and each cluster is represented by its average center.
The frame after clustering is shown in Fig. 3(c), which will
be further divided into 360 pieces, denoted as s1, s2, ..., s360.
The segmented frame is shown in Fig. 3(d).

Generation of rKey After the preparations, the first layer
of encoding begins. The value assigned for each segment
follows:

si =

{
1, if there exists a cluster in this segment
0, else

(4)

We name the first layer of descriptor as rKey, where r stands
for radical. It is the summation of the value of each segment

TABLE I
PAMETERS OF KD-TREE CLUSTERING FOR DIFFERENT LABELS

label 13 14 16 18 19 20

item building fence trunk pole traffic-sign lane-marking
tolerance 0.25 0.25 0.25 0.25 1 1
minSize 10 10 10 10 10 10
maxSize 5000 5000 5000 5000 5000 5000



Fig. 3. Flowchart of the construction of SectionKey. (a) is a input frame of point cloud with semantic information. (b) is the projection of (a) with certain
labels. (c) is (b) after the KD-Tree clustering. (d) is (c) being equally segmented into 360 pieces. (e) is an illustration of the rKey. (f) is a combined
illustration of the rKey and tKey. (g) is a combined illustration of the rKey, tKey, and pKey. Here, all three keys are scalar.

as:

rKey =

360∑
i=1

si (5)

An illustration is shown in Fig. 3(e), where the shaded
segments mean there exists at least one cluster in this area.

Generation of tKey The second layer of descriptor is
named as tKey, which focuses on encoding the transition
relation within the clustered point cloud. If there exists a
difference between value of neighboring segments, namely
there is one transition. And the value of tKey is the total
number of transitions, which can be represented as:

tKey = |s1 − s360|+
360∑
i=2

(|si − si−1|) (6)

An illustration is shown in Fig. 3(f), where segment border-
lines marked in bright blue denote where transition happens.

Generation of pKey To make the descriptor closer towards
humanoid perception, the third layer of descriptor — pKey, is
proposed to depict the relative topological distance. Suppose
di is the distance between the center point and its nearest
cluster in this segment. If there is no cluster within this
segment, di is set to zero. The value of k depends on how
many clusters are within this segment.

di =

{
0, if there is no cluster in this segment
min(ρ1, ..., ρk), else

(7)

pKey = |d1 − d360|+
360∑
i=2

(|di − di−1|) (8)

This three-layers global descriptor SectionKey not only
enjoys robustness and rotation invariance that preserves the
crucial geometric information, but also serves as a perfect
pre-selection in the candidate selection part which will be
detailed subsequently.

B. Candidates Selection

The candidate selection steps are summarized as follows:
1) Set a highly selective threshold to find the potential

‘candidate center’. As mentioned earlier, a frame of
point cloud could be encoded into three keys — rKey,
tKey, and pKey. Only when all three keys of the frame
accord with the threshold, it is recognized as a ‘candi-
date center’ as illustrated in Fig. 4. For the adjustable
threshold, it is calculated based on the distribution of
the keys of previously visited places.

2) Check the validity of the ‘candidate center’. We will
check the validity of those potential ‘candidate centers’
from two aspects. First of all, the temporal difference
check. We check whether the ‘candidate center’ belongs
to the adjacent frames of the query frame. Since the
sensor feedback is time-continuous in a SLAM system
[25], a single loop closure occurrence often indicates
high similarity on the adjacent LiDAR scans. Therefore,
if there is no temporal difference between the query
frame and ‘candidate center’, then it is not qualified.
Apart from this, we also adopt the similarity scoring
module from SSC [20] to check the similarity between
the query frame and ‘candidate center’. Only when the
similarity score is larger than 0.6, which is a empirically
determined threshold, then the second requirement is
considered satisfied. This is because the ‘candidate
center’ stands for the starting point of the searching
interval indicated in Step 3 below.

3) Search the neighboring frames of the qualified
‘candidate center’. As the neighboring frames possess
high similarity with the ‘candidate center’, they are also
considered as the highly potential matching candidates
of the query frame. In our algorithm, the number of
candidates it will have is 0 if no loop closure is detected.
Each query frame can have at most 25 candidate frames.
And the candidates are sorted in a descending order
based on their similarity score.



Fig. 4. An illustration of the candidate selection process in KITTI sequence 00. The horizontal X-axis direction stands for the sequence of the frames,
where it is from 0 to 4540 in KITTI 00. The vertical Y-axis direction stands for the value of the Keys, which is an integer for both rKey and tKey, and
a floating number for pKey. The horizontal red square stands for the query frame. Each dot represents the frame’s value of the specific key, so there are
4541 dots in a graph for KITTI 00. Since the squares represent the frames, the number of squares should be equal to the number of dots. In this figure,
the number of squares are largely reduced for better visualization. The horizontal squares filled in yellow, green, and purple denote the frames that accord
with the threshold in the three Keys, respectively. Note that we only consider the overlapped frame which similarity score is higher than 0.6 and temporal
difference is higher than 50 as the ‘candidate center’. The vertical squares denote the search in the neighboring frames, which is conducted around the
qualified ’candidate center’. The light blue candidate is discarded due to that it fails to meet the temporal difference requirement.

4) Fill the gap. As three selective thresholds and two
check are set previously, the standard for becoming
a qualified ‘candidate center’ is relatively high. Some
query frames with ground-truth candidates may end
up having no ‘candidate center’ selected. Due to the
time consistency property, it is therefore necessary and
reasonable to fill the gap between intensive qualified
‘candidate centers’. To save computational time, the
candidates picked for the frames in the ‘gap’ are from
its neighboring ‘candidate centers’. Here, the definition
for ‘gap’ is the difference of the sequence between two
adjacent ‘candidate centers’, which should be less than
or equal to five. If the difference of the sequence is
larger than five, then there is no need to fill it because
the ‘candidate centers’ are not intense here.

C. Similarity Scoring Calculation
For the Similarity Scoring Module, we adopt it from

SSC [20] due to its high precision on calculating the similar-
ity between a pair of point cloud frames. The key points of
SSC’s mechanism for calculating similarity can be concluded
as follows:

1) Fast yaw angle calculation Given one pair of point
clouds (C1,C2) with semantic information, the repre-
sentative objects are filtered out and they are converted
into polar coordinates. Each converted point cloud is
then segmented to Ns sectors by yaw angle, and only
the smallest polar diameter in each segment is used to
form 1-D vectors P1 and P2. The point cloud pair
(C1,C2) now is transformed into a 1-D vector pair
(P1,P2). Similar to Scan Context [14], the shift of
column vector and yaw angle are obtained through:

shift = argmin
i,i∈[0,Ns]

Ψ(P1,P
i
2) (9)

θ = 360− 360× shift

N
(10)

where N indicates the number of segments, Pi
2 is P2

shifted by the ith element and Ψ is defined as:

Ψ(P1,P
i
2) =

∥∥∥P1 −Pi
2

∥∥∥
1

(11)

2) Translation calculation Use the obtained yaw angle
θ to align P2 to the same direction with P1, then
the semantic ICP algorithm [20] can be performed
to acquire the translation that minimize the difference
between P1 and P2.

3) Similarity scoring The obtained yaw angle and trans-
lation are used to align two point clouds. Given aligned
point cloud pair (C1,Ca), divide them azimuthally and
radially. The value for each small patch is the output of
an encoding function. Finally, the output similarity score
would be equal to the percentage of matched patches.

III. EXPERIMENTS

A. Experimental Setting

The experiments were conducted on public Semantic
KITTI Dataset [26], which contains 11 sequences (from 00
to 10) collected by a 64-line LiDAR with manual semantic
annotation and ground-truth poses. The ground-truth poses
are used to test the correctness of the place recognition
candidates that each algorithm generated. To make our
comparisons more convincing, the point cloud pair with a
relative distance less (greater) than 3m (20m) is regarded as a
positive (negative) sample, which is same to SSC [20]. In our
experiments, the sequences with loop closure scenarios (i.e.,
sequences 00, 02, 05, 06, 07, and 08) were chosen to evaluate
the performance of our algorithm. Among them, only the se-
quence 08 has reverse loops, while other sequences only have
loop events with the same direction. The dataset contains 28
classes which include classes to distinguish non-moving and
moving objects, and we only select six classes (i.e., building,
fence, trunk, pole, traffic-sign, and lane-marking) that contain
the most unique and static geometric information. All tests



(a) KITTI 00 (b) KITTI 02 (c) KITTI 05

(d) KITTI 06 (e) KITTI 07 (f) KITTI 08

Fig. 5. Precision-Recall curves of different methods on pairs selected from Semantic KITTI dataset, with negative : positive = 100 : 1.

were performed on a laptop with Intel Core i7-10750H CPU
@ 2.60GHz and 16 GB RAM.

B. Place Recognition Performance on Pairs

1) Dataset: For fairness, our results are based on the
same evaluation samples provided by SSC [20]. The list of
evaluation samples selected by SSC are all positive samples,
and some randomly-selected negative samples are based on
a fixed ratio for evaluation. In this experiment, the pairs are
from Semantic KITTI 00, 02, 05, 06, and 08 sequences.
Based on the ratio of positive pairs over negative pairs, we
divide the experiments into two categories: 1) neg 10: the
number of negative pairs is 10 times of positive pairs; 2)
neg 100: the number of negative pairs is 100 times of positive
pairs. And in this section, we compare our system with
state-of-the-art baselines, which include: 1) Scan Context
(SC) [14]; 2) Intensity Scan Context (ISC) [7]; 3) M2DP
[13]; 4) LiDAR Iris (LI) [16]; 5) PointNetVLAD (PV) [27];
6) OverlapNet (ON) [17]; 7) SGPR [18]; and 8) SSC [20].
Similar steps are taken to process the OverlapNet (ON) [17]
and SGPR [18] methods in accordance with SSC [20].

2) PR Curve: The performance of SectionKey for negative
ratio equal to 100 is analyzed using the precision-recall
curve as shown in Fig. 5. It is clear that our proposed
SectionKey method outperforms all the comparative methods
in all sequences and achieves large margin especially in
sequence 02 and 07. SSC has comparable performances with
our method in sequence 05 and 08. For OverlapNet, it is easy
to find that its performance is severely degraded in sequence

08, which can be explained by its incapability to robustly
handle reverse loop closures.

3) F1 and EP: Apart from PR curve, we also introduce
two more indicators, i.e., the maximum F1 score and Ex-
tended Precision [28], to evaluate the performance of our
proposed SectionKey method, together with the aforemen-
tioned comparative methods. The definition if F1 score and
Extended Precision (EP) are described as follows:

F1 = 2× P ×R

P +R
(12)

EP =
1

2
(PR0 +RP100) (13)

where F1 is the harmonic mean of P and R, and Extended
Precision is a specific metric designed for place recognition
algorithms. P and R denote the Precision and Recall, re-
spectively. Normally, precision rate goes down while recall
rate increases due to the increasing threshold. Therefore, F1

indicates the integrated optimal performance that one method
can achieve. PR0 is the precision at the minimum recall,
while RP100 is the maximum recall at 100% precision.

The F1 score and Extended Precision for above mentioned
methods are shown in Table. II. We can see from this table
that our method achieves an overall leading performance.
And especially in KITTI 00 and 07, where other methods’
performance are not ideal and our proposed SectionKey still
maintains an advantageous performance.

IV. CONCLUSION

In this paper, we presented a novel rotation-invariant
global descriptor named SectionKey, which exploits both se-



TABLE II
F1 MAX SCORES AND EXTENDED PRECISION ON SELECTED PAIRS (NEG 100) FROM KITTI SEQUENCES 00, 02, 05, 06, 07, AND 08.

Methods KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 07 KITTI 08 Mean

SC [14] 0.750/0.609 0.782/0.632 0.895/0.797 0.968/0.924 0.662/0.554 0.607/0.569 0.777/0.681
ISC [7] 0.657/0.627 0.705/0.613 0.771/0.727 0.842/0.816 0.636/0.638 0.408/0.543 0.670/0.661

M2DP [13] 0.708/0.616 0.717/0.603 0.602/0.611 0.787/0.681 0.560/0.586 0.073/0.500 0.575/0.516
LI [16] 0.668/0.626 0.762/0.666 0.768/0.747 0.913/0.791 0.629/0.651 0.478/0.562 0.703/0.674
PV [27] 0.779/0.641 0.727/0.691 0.541/0.536 0.852/0.767 0.631/0.591 0.037/0.500 0.595/0.538
ON [17] 0.869/0.555 0.827/0.639 0.924/0.796 0.930/0.744 0.818/0.586 0.374/0.500 0.790/0.637

SGPR [18] 0.820/0.500 0.751/0.500 0.751/0.531 0.655/0.500 0.868/0.721 0.750/0.520 0.766/0.545
SSC [20] 0.951/0.849 0.891/0.748 0.951/0.903 0.985/0.969 0.875/0.805 0.940/0.932 0.932/0.868

SectionKey-Ours 0.996/0.882 0.918/0.749 0.956/0.900 0.995/0.992 0.911/0.818 0.940/0.892 0.948/0.872
1 F1 max scores and Extended Precision: F1 max scores / Extended Precision. The best scores are marked in bold and the

second best scores are underlined.

mantic and geometric information to significantly boost place
recognition performance in large-scale urban environments.
The proposed system consists of a Descriptor Construction
submodule with a three-layers key and a Candidates Selec-
tion submodule with a ‘candidate center’ strategy. Extensive
experimental results on public Semantic KITTI dataset have
demonstrated the superiority of the proposed system over
existing methods in terms of accuracy and efficiency. Future
work will be focusing on integrating the semantic and relative
topological distance information, and achieving intelligent
selection of geometric labels for different scenarios.
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